Waterfall Sampling: An Online Sequential Monte Carlo Strategy for Conformational Sampling of Biomolecular Systems
نویسندگان
چکیده
منابع مشابه
Adaptive strategy for stratified Monte Carlo sampling
We consider the problem of stratified sampling for Monte Carlo integration of a random variable. We model this problem in a K-armed bandit, where the arms represent the K strata. The goal is to estimate the integral mean, that is a weighted average of the mean values of the arms. The learner is allowed to sample the variable n times, but it can decide on-line which stratum to sample next. We pr...
متن کاملMonte Carlo vs Molecular Dynamics for Conformational Sampling
A comparison study has been carried out to test the relative efficiency of Metropolis Monte Carlo and molecular dynamics simulations for conformational sampling. The test case that has been examined is liquid hexane. OPLS potential functions have been used with sampling of external motions and internal angle bending and torsions. The BOSS 3.6 and AMBER 4.0 programs were used to perform the inte...
متن کاملAdvanced Interacting Sequential Monte Carlo Sampling for Inverse Scattering
The following electromagnetism (EM) inverse problem is addressed. It consists in estimating local radioelectric properties of materials recovering an object from global EM scattering measurements, at various incidences and wave frequencies. This large scale ill-posed inverse problem is explored by an intensive exploitation of an efficient 2D Maxwell solver, distributed on high performance compu...
متن کاملEfficient Block Sampling Strategies for Sequential Monte Carlo Methods
Sequential Monte Carlo (SMC) methods are a powerful set of simulation-based techniques for sampling sequentially from a sequence of complex probability distributions. These methods rely on a combination of importance sampling and resampling techniques. In a Markov chain Monte Carlo (MCMC) framework, block sampling strategies often perform much better than algorithms based on one-at-a-time sampl...
متن کاملOn sequential Monte Carlo sampling methods for Bayesian filtering
In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and nonGaussian. A general importance sampling framework is developed that unifies many of the methods which have been proposed over the last few decades in several ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2019
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2018.11.794